A Comparison of Several Heuristic Algorithms for Solving High Dimensional Optimization Problems

نویسندگان

  • Emmanuel Karlo Nyarko
  • Robert Cupec
  • Damir Filko
چکیده

The number of heuristic optimization algorithms has exploded over the last decade with new methods being proposed constantly. A recent overview of existing heuristic methods has listed over 130 algorithms. The majority of these optimization algorithms have been designed and applied to solve real-parameter function optimization problems, each claiming to be superior to other methods in terms of performance. However, most of these algorithms have been tested on relatively low dimensional problems, i.e., problems involving less than 30 parameters. With the recent emergence of Big Data, the existing optimization methods need to be tested to find those (un)suitable to handle highly dimensional problems. This paper represents an initial step in such direction. Three traditional heuristic algorithms are systematically analyzed and tested in detail for problems involving up to 100 parameters. Genetic algorithms (GA), particle swarm optimization (PSO) and differential evolution (DE) are compared in terms of accuracy and runtime, using several high dimensional standard benchmark functions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

PERFORMANCE COMPARISON OF CBO AND ECBO FOR LOCATION FINDING PROBLEMS

The p-median problem is one of the discrete optimization problem in location theory which aims to satisfy total demand with minimum cost. A high-level algorithmic approach can be specialized to solve optimization problem. In recent years, meta-heuristic methods have been applied to support the solution of Combinatorial Optimization Problems (COP). Collision Bodies Optimization algorithm (CBO) a...

متن کامل

Designing a Meta-Heuristic Algorithm Based on a Simple Seeking Logic

Nowadays, in majority of academic contexts, it has been tried to consider the highest possible level of similarities to the real world. Hence, most of the problems have complicated structures. Traditional methods for solving almost all of the mathematical and optimization problems are inefficient. As a result, meta-heuristic algorithms have been employed increasingly during recent years. In thi...

متن کامل

A Novel Heuristic Optimization Methodology for Solving of Economic Dispatch Problems

This paper presents a biogeography-based optimization (BBO) algorithm to solve the economic loadDispatch (ELD) problem with generator constraints in thermal plants. The applied method can solvethe ELD problem with constraints like transmission losses, ramp rate limits, and prohibited operatingzones. Biogeography is the science of the geographical distribution of biological species. The modelsof...

متن کامل

Solving the Multiple Traveling Salesman Problem by a Novel Meta-heuristic Algorithm

The multiple traveling salesman problem (MTSP) is a generalization of the famous traveling salesman problem (TSP), where more than one salesman is used in the solution. Although the MTSP is a typical kind of computationally complex combinatorial optimization problem, it can be extended to a wide variety of routing problems. This paper presents an efficient and evolutionary optimization algorith...

متن کامل

A heuristic approach for multi-stage sequence-dependent group scheduling problems

We present several heuristic algorithms based on tabu search for solving the multi-stage sequence-dependent group scheduling (SDGS) problem by considering minimization of makespan as the criterion. As the problem is recognized to be strongly NP-hard, several meta (tabu) search-based solution algorithms are developed to efficiently solve industry-size problem instances. Also, two different initi...

متن کامل

A Hybrid Modified Meta-heuristic Algorithm for Solving the Traveling Salesman Problem

The traveling salesman problem (TSP) is one of the most important combinational optimization problems that have nowadays received much attention because of its practical applications in industrial and service problems. In this paper, a hybrid two-phase meta-heuristic algorithm called MACSGA used for solving the TSP is presented. At the first stage, the TSP is solved by the modified ant colony s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015